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Abstract

Multimodal generative models that can understand and generate across multiple modalities
are dominated by autoregressive (AR) approaches, which process tokens sequentially from
left to right, or top to bottom. These models jointly handle images, text, video, and audio for
various tasks such as image captioning, question answering, and image generation. In this
work, we explore discrete diffusion models as a unified generative formulation in the joint text
and image domain, building upon their recent success in text generation. Discrete diffusion
models offer several advantages over AR models, including improved control over quality
versus diversity of generated samples, the ability to perform joint multimodal inpainting (across
both text and image domains), and greater controllability in generation through guidance.
Leveraging these benefits, we present the first Unified Multimodal Discrete Diffusion (UniDisc)
model which is capable of jointly understanding and generating text and images for a variety
of downstream tasks. We compare UniDisc to multimodal AR models, performing a scaling
analysis and demonstrating that UniDisc outperforms them in terms of both performance and
inference-time compute, enhanced controllability, editability, inpainting, and flexible trade-off
between inference time and generation quality. Code and additional visualizations are available
at https://unidisc.github.io.

1. Introduction

Multimodal generative models—which can understand and generate a variety of modalities
such as text, images, videos, and audio – can significantly improve the capabilities of an AI
system, as these models can (1) leverage information from multiple sources to better understand
the context (2) learn from any available data source, and (3) respond to a user’s request in a
flexible manner, thus dynamically generating text, images, or audio as required. Although the
choice of model architecture—transformers—is currently clear, the optimal generative objective
remains unclear.

Current multimodal models are typically trained jointly using (an approximation to) a
maximum likelihood objective over sequences consisting of images, text, and other modalities.
Autoregressive (AR) models typically quantize data from continuous modalities and optimize
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“A surrelaist painting of a 
horse’s face, inspired by the 

works of Salvador Dali”

“The Muse d’Orsay is located 
on the Seine River in Paris at 

night, featuring an iconic 
bridge style building”

“The toolbox is beside the 
workshop bench and beneath 

the overhead lights.”

“Medieval-inspired drawing of 
enraged moths surrounding a 

medieval knight”

“medieval-inspired drawing of 
enraged moths surrounding a 
medieval knight

“A group of willow trees 
surround a tranquil lake on a 

cloudy day ”

“a group of willow trees 
surround a tranquil lake on a 
cloudy day ”

“The Muse d’Orsay is located 
on the Seine River in Paris at 
night, featuring an iconic 
bridge style building”

 
 “The toolbox is beside the 
workshop bench and beneath 
the overhead lights.”

Figure 1 |We show UniDisc’s ability to jointly inpaint image & text pairs. We do not explicitly
optimize for this objective but it is intrinsic to UniDisc’s unified diffusion objective.

the exact likelihood through a series of conditionals; during generation, they use a fixed token
order, e.g., left-to-right, top-to-bottom (raster order) for images. They have demonstrated
strong performance in both text and image generation, making them the current workhorse for
multimodal models. However, generating image tokens autoregressively is slow and wasteful
as nearby tokens are highly correlated, and this process results in many unnecessary forward
passes through the network Lu et al. (2022); Team (2024b); Team et al. (2023). Moreover, AR
models are difficult to control Li et al. (2022), cannot inpaint or infill unless explicitly trained to,
and cannot easily trade-off quality versus compute at inference time.

On the other hand, continuous diffusion models—which have been shown to work well for
continuous modalities such as images—have fast inference, are highly controllable, and can
easily trade-off quality vs. compute. These models corrupt data by adding Gaussian noise and
are trained to denoise the data, maximizing a lower bound on the likelihood. However, these
models have found to be significantly slower to train in text domain compared to AR models
(by roughly 64 times) Gulrajani and Hashimoto (2024). Text is inherently discrete, and adding
continuous Gaussian noise to text token embeddings does not correspond to meaningful changes
in the actual text. These trade-offs between different modeling strategies across modalities raises
the question: what is the right unified generative formulation across text, image, and other
modalities?

To address this, we present UniDisc, a unified multimodal model based on discrete diffusion.
While continuous Gaussian noise is inefficient with discrete data such as text and graphs,
UniDisc corrupts data with discrete noise—specifically, randomly masking tokens—and learns
to map mask tokens into multimodal tokens during inference. Discrete diffusion through
masking has been explored separately for generating text Austin et al. (2021); Sahoo et al.
(2024) and images Chang et al. (2022, 2023). Such explorations have resulted in different noise
schedules, transition kernels, and loss functions across the text and image domains. In this
paper, we explore a discrete diffusion formulation and its applicability in jointly modeling text
and image modalities with a unified set of hyperparameters.
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We propose a unified architecture that jointly tokenizes text and images, and uses full self-
attention to learn to map a masked token sequence to a clean token sequence by sampling
from a joint vocabulary of text and image tokens. We evaluate UniDisc across multimodal
conditional and unconditional generation on multiple image-text datasets and compare to its
AR counterpart. First, we find UniDisc achieves a higher FID and CLIP score than AR (Fig. 4),
which we attribute to the effect of classifier-free guidance. We show that UniDisc exhibits strong
joint image-text inpainting abilities that are not possible with prior unified generative models
as seen in Fig. 1. Second, we find that UniDisc consistently outperforms its AR counterpart in
inference efficiency: at a given inference compute budget, our model achieves generations of
higher quality and diversity (Fig. 5). Third, we show UniDisc showcases stronger discriminative
ability than AR on retrieval tasks due to its variable number of sampling steps (Fig. 7). Lastly,
we scale UniDisc to a 1.4B parameter model, trained on web-scale image-text datasets.

Our code, model weights, and dataset are publicly available. More qualitative visualizations
are available at https://unidisc.github.io.

2. Related Work

2.1. Unified Multi-Modal Models

In recent years, unified models for processing multiple modalities have advanced significantly.
Models like Flamingo Alayrac et al. (2022) and PaLM-E Driess et al. (2023) demonstrate strong
few-shot learning capabilities across tasks. LLAVA Liu et al. (2023) enhances LLaMa Touvron
et al. (2023) with multimodal fine-tuning, but still uses separate encoders, limiting true unifica-
tion and image generation. Recent efforts, like Perceiver IO Jaegle et al. (2021) and Unified-IO Lu
et al. (2022), attempt modality unification but at a smaller scale. The Chameleon project Team
(2024b) scales this up with a 34B parameter model trained on image-text data. However these
approaches largely focus on autoregressive generation which is inefficient for high-dimensional
data.

Relevant to our work, UniD3 Hu et al. (2023) considered discrete diffusion on image and
text but made several design decisions that separated each modality, using both absorbing and
uniform masking, decoupling the modalities inside the model with separate operations on each.
Further we couldn’t compare against their model—no training code is available and were unable
to reproduce their reported results using their publicly available code.

2.2. Discrete Diffusion Models

Discrete diffusion models have emerged as a promising alternative to continuous diffusion
for discrete data types. Sohl-Dickstein et al. introduced the first discrete diffusion model
over binary variables, Hoogeboom et al. extended the noising process to categorical variables,
demonstrating its effectiveness on image generation tasks. D3PM Austin et al. (2021) later
extended discrete diffusion to a more general set of noising processes, allowing for more flexible
noise schedules. Recent work by SEDD Lou et al. introduced score entropy, a novel loss function
for discrete diffusion models that bridges the gap between continuous and discrete spaces, and
more recently, Sahoo et al. (2024); Shi et al. (2024) showed text perplexity competitive with GPT-2.
Most recently, Nie et al. (2024) looked at the scaling properties of discrete diffusion on text. While
this approach shows promise for improving discrete diffusion models, these methods were
primarily focused on language modeling tasks. Our work extends the application of discrete
diffusion to multiple modalities and demonstrates its effectiveness in a unified architecture.
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3. UniDisc: Unified Discrete Diffusion

3.1. Diffusion Models

Diffusion models Ho et al. (2020); Sohl-Dickstein et al.; Song et al. (2020) are a class of generative
models that learn to construct a data distribution by gradually reversing a process that introduces
noise into clean data samples. This approach models the transformation of a data sample 𝑥0
from a clean state through increasingly noisy states until it reaches a pure noise distribution.

The forward diffusion process is described by a series of transitions, where each latent
variable 𝑥𝑡 at time step 𝑡 is sampled from a Gaussian distribution as follows:

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡;
√
𝛼̄𝑡𝑥0, (1 − 𝛼̄𝑡) 𝐼)

Here, 𝛼̄𝑡 =
∏𝑡

𝑠=0 𝛼𝑠 represents the cumulative product of noise levels, making 𝑥𝑡 increasingly
distant from 𝑥0 as 𝑡 increases. The variable 𝑥𝑡 represents the noisy version of 𝑥0 at time 𝑡, modeled
to progressively approximate Gaussian noise as 𝑡 approaches the final time step.

The reverse diffusion process then aims to reconstruct the original data by progressively
denoising these samples. This involves learning the reverse transitions, with the goal to train the
model 𝑝𝜃(𝑥𝑡−1 |𝑥𝑡) to approximate the true reverse process and effectively recover the original
data point 𝑥0 from the noisy samples.

Given 𝑇 timesteps of diffusion, the loss using the Evidence Lower Bound (ELBO) for the
diffusion process equals1:

Ldiff =−E𝑞(𝑥1 |𝑥0 )
[
log 𝑝𝜃(𝑥0 |𝑥1)

]︸                            ︷︷                            ︸
reconstruction term

+ (1)

𝑇∑︁
𝑡=2

E𝑞(𝑥𝑡 |𝑥0 ) [𝐷𝐾𝐿(𝑞(𝑥𝑡−1 |𝑥𝑡, 𝑥0)∥𝑝𝜃(𝑥𝑡−1 |𝑥𝑡))]︸                                                        ︷︷                                                        ︸
denoising matching term

3.2. Discrete Diffusion Models

Building on the foundations of continuous diffusion models, discrete diffusion models adapt
these concepts to structures that are inherently discrete. Unlike their continuous counterparts
that model transitions of 𝑥𝑡 given 𝑥𝑡−1 with Gaussian distributions, discrete models define
transitions using categorical distributions. The forward process for discrete models is thus
characterized as:

𝑞(𝑥𝑡 |𝑥0) = Cat(𝑥𝑡; 𝑥0 · 𝑄̄𝑡) (2)

Here, 𝑄̄𝑡 =
∏𝑡=𝑡

𝑡=0 𝑄𝑡 is a 𝑁 × 𝑁 matrix where 𝑁 is the size of the vocabulary. 𝑄̄𝑡 represents
the cumulative transition matrix at each discrete time step 𝑡, and 𝑄𝑡 is a transition matrix
[𝑄𝑡] 𝑖 𝑗 = 𝑞(𝑥𝑡 = 𝑗 | 𝑥𝑡−1 = 𝑖) dictating the probabilities of moving from one discrete state (a
token in the vocabulary) 𝑥𝑡−1 to another 𝑥𝑡 discrete state (a token in the vocabulary), 𝑥0 is a
one-hot vector of the input data sample. D3PM Austin et al. (2021) generalizes this framework
over various transition matrices (𝑄𝑡), the popular ones mainly include uniform and absorbing
transition matrix. In UniDisc, we use the absorbing transition matrix as empirically it has been
found to work the best across text and images Austin et al. (2021); Lou et al. (2024). Absorbing

1We skip the prior matching term from the loss as it is zero.
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“A dreamy, 
impressionist 
painting of a Venetian 
canal at dusk, with 
soft, golden lighting.“
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“A dreamy, 
impressionist 
painting of a Venetian 
canal at dusk, with 
soft, golden lighting.“

Image De-
Tokenizer

❄Image 
Tokenizer

❄

Text De-
Tokenizer

“A romantic, 
impressionist painting 
of a Venetian canal at 
sunset”

xt
argmax pθ(x0 |xt)x0 pθ(x0 |xt)Weighted CE Loss

Figure 2 | UniDisc is a unified multimodal discrete diffusion model that can jointly process and
generate text and images. Each modality is converted into a sequence of discrete tokens and we
jointly denoise, supervising with a weighted cross-entropy loss. At inference time we begin
with a set of [MASK] tokens and iteratively unmask tokens.

transition matrix requires having an absorbing state namely the [MASK] token. The matrix is
represented as 𝑄𝑡 = 𝛼𝑡 𝐼 + (1 − 𝛼𝑡)1𝑒𝑇𝑚, where 1 is a column vector of ones and 𝑒𝑚 is a one-hot
vector with one on the mask state 𝑚. This ends up being a matrix with all zeros except 𝑖 = 𝑗 ≠ 𝑚

is 𝛼 and 𝑗 = 𝑚, 𝑖 ≠ 𝑚 is 1 − 𝛼 and 𝑖 = 𝑗 = 𝑚 is 1.

Intuitively this means that during the forward transition, the probability of an input token 𝑥0
to stay the same is 𝛼, the probability of it being masked is 1 − 𝛼, and the probability of a masked
token to be unmasked is 0.

Given the forward diffusion in Eq. (2), Sohl-Dickstein et al. uses the same objective function
as Eq. (1) to optimize their model, where 𝑞(𝑥𝑡−1 |𝑥𝑡) ends up being a Bernoulli distribution
instead of a Gaussian distribution. MDLM Sahoo et al. (2024) simplifies this objective function
by considering continuous time-diffusion and applying loss only on the masked tokens. The
final loss simply ends up being a re-weighted masked generative modeling loss:

Ldiff = E𝑡∼U(0,1) ,𝑞(𝑥𝑡 |𝑥 )

[
𝛼′𝑡

1 − 𝛼𝑡
log 𝑝𝜃(𝑥0 | 𝑥𝑡)

]
(3)

where 𝛼′𝑡 = 𝛼𝑡 −𝛼𝑡−1, and 𝛼𝑡 is the probability of the token not being masked. MaskGIT Chang
et al. (2022) and Muse, state-of-the-art masked image generative model use the same loss as
Eq. (3), except there is no reweighting term and the time is discrete time instead of continuous
time. The noising schedule 𝛼𝑡 is also different, while language discrete diffusion models such
as Austin et al. (2021); Sahoo et al. (2024) use a linear-time schedule, MaskGIT and Muse Chang
et al. (2022, 2023) use a cosine schedule. We ablate these different design choices in Appendix F.

3.3. Unified Training via UniDisc

We train a bidirectional decoder-only transformer Vaswani et al. (2017) using 2D RoPE embed-
dings Liu et al. (2024) for all image tokens, 1D RoPE Su et al. (2023) embeddings for text tokens,
and add learned modality-specific embeddings to each token. This allows our model both
flexibility in resolution at inference, and the ability to use compute effectively by performing the
majority of training at a lower resolution. We use the same objective function as Eq. (3), except
for us 𝑥0 is [𝑥 𝑖𝑚𝑔0 , 𝑥𝑡𝑥𝑡0 ]

Classifier-Free guidance (CFG) Ho and Salimans (2022) has been used in continuous diffusion
models to trade-off between quality and diversity of generation. We apply this idea to discrete
diffusion, with a probability of 0.1 we set all the tokens of a random modality to be mask tokens,
this allows UniDisc to learn unconditional likelihood for image and text modality. During
inference we use CFG for conditional generation (image-to-text or text-to-image) to trade-off
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between quality and diversity of generation as shown in Fig. 5.

To improve training stability, we use Query-Key Normalization Wortsman et al. (2023) and
use RMSNorm Zhang and Sennrich (2019) for all other norms. We use Sandwich Normaliza-
tion—normalization before and after each FFN, as we found this helps control activations in
deeper layers as previously reported in Ding et al. (2021); Zhuo et al. (2024).

To further improve the convergence speed of discrete diffusion we analyze the noising
schedule and find that linear schedule in Austin et al. (2021); Sahoo et al. (2024) results in
excessively high weighting for early timesteps, impairing the convergence speed. Following
Min-SNR trick in continuous diffusion Hang et al. (2023), we limit the minimum weighting
to 5. An architecture diagram is provided in Fig. 2 and pseudo-code for training procedure is
provided in Appendix A.1.

3.4. Unified Sampling via UniDisc

Sampling in masked discrete diffusion, involves mapping a set of masked tokens 𝑚 to a set of
visible tokens 𝑥0 using 𝑇 timesteps of denoising. A variety of sampling strategies have been
previously proposed Austin et al. (2021); Chang et al. (2022); Lou et al. (2024); Sahoo et al. (2024);
Sohl-Dickstein et al.; Zheng et al. (2024) for masked discrete diffusion. MaskGIT Chang et al.
(2022) proposes a confidence-based sampling, where they decode the most confident tokens at
each step of denoising. D3PM Austin et al. (2021) and MLDM Sahoo et al. (2024) uses a sampling
mechanism similar to Ho et al. (2020) except applied to a bernoulli distribution, which we refer
to as DDPM sampling. This results in a random set of tokens being decoded, instead of the
most confident ones as in MaskGIT. We ablate these sampling strategies in Fig. 5 and find the
confidence-based sampling proposed in MaskGIT to work the best for unified modeling.

4. Experiments

We compare UniDisc against an autoregressive (AR) baseline across various tasks, metrics and
datasets. We use the same architecture and hyper-parameters, and data, only differing in the
attention mask and respective loss functions. For our autoregressive baseline we use a standard
language model architecture from Chameleon Team (2024b)—that is a decoder-only transformer
with causal attention and rotary positional embeddings. To enable classifier-free guidance,
we dropout modalities with 10% probability during training. For UniDisc, we dropout both
modalities and for the AR baseline we dropout only the first modality in the input sequence as
in Liu et al. (2024).

Our experiments aim to answer the following questions:

1. How does UniDisc compare against AR models in unconditional and conditional multi-
modal generation of image/text pairs?

2. How effective is classifier-free guidance in conditional generation for AR models and for
UniDisc?

3. How does UniDisc compare against AR models in terms of training efficiency with varying
the ratio of image-text tokens?

4. How do various sampling strategies for UniDisc affect its generation results and inference
speed?

5. How does UniDisc compare against AR models across image-language reasoning tasks?
6. How do various design choices of UniDisc contribute to its performance?

Lastly, we show that we can successfully scale UniDisc, to a 1.4B parameter model, trained on
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Figure 3 | Scaling Analysis for AR and UniDisc models: (Left) IsoFLOP curves for UniDisc,
plotting varying model size for a fixed FLOP budget. (Right) Estimating optimal parameter size
for each budget - minima of fitted parabola, we plot scaling laws for both AR and UniDisc. We
find 13.2x more compute is required for UniDisc to achieve the same overall loss as AR.

500B tokens. We qualitatively evaluate this model, to demonstrate its capabilities.

Datasets: In Section 4.1, 4.2, and 4.3, we conduct experiments with different train and
validation sets. Our training set includes DataComp1B Gadre et al. (2024), CC12M Changpinyo
et al. (2021), CLEVR-math Lindström and Abraham (2022), and CLEVR-Ref Liu et al. (2019).
Our evaluation datasets include a held-out validation set of DataComp1B and CC12M, along
with Flickr Plummer et al. (2016), MS-COCO30k Chen et al. (2015), and Winoground Thrush
et al. (2022).

4.1. Evaluation of Multimodal Generation

We evaluate UniDisc and AR models in unconditional and conditional generation tasks.

Evaluation metrics: We consider the following three evaluation metrics, most commonly used
in previous works: i) Joint perplexity indicates a model’s ability to fit to different validation sets.
Note that this metric is jointly calculated across image-text tokens. The perplexity values from
the autoregressive Chameleon baseline are exact likelihoods, the values from UniDisc are upper
bounds. While perplexity is a good metric for assessing the fitting ability of a model, it cannot
be used to evaluate its generation ability. ii) Fréchet inception distance (FID) Heusel et al.
(2017) is a popular metric in image-generation to quantify the quality and diversity of image
generation.iii) CLIP score is used for calculating image-text coherence. While we could not find
an equivalent to the FID metric for text, we use CLIP score to evaluate generated image-text
coherence, conditioning our model on an input image.

Experimental details:

We show conditional image-text generation results in Fig. 4. We condition on an image to
generate the corresponding language description, and vice versa, condition on the language
description to generate the corresponding image. For unconditional results please refer to Fig. 10
in the Appendix. We use a dataset comprising 30M image-text pairs from DataComp1B Gadre
et al. (2024) and CC12M Changpinyo et al. (2021), please refer to Appendix B.1 for further details.

UniDisc significantly outperforms AR in conditional generation while performing equally well in
unconditional generation). We attribute this performance gap to classifier-free guidance (CFG). As
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Figure 4 | Conditional generation results for both FID and CLIP metrics, across a range of
CFG values. We find that AR is more sensitive to the CFG weighting, with a narrower optimal
range.

can be seen in Fig. 4, the results without CFG (Scale=0) are similar between AR and UniDisc,
but increasing CFG disproportionately benefits UniDisc.

The iterative generation process of diffusion makes it easy to blend conditional and uncondi-
tional predictions to guide the output. Autoregressive models, on the other hand, generate data
sequentially in a fixed order, without any iterative refinement, which makes it difficult to mix in
unconditional predictions to guide generation. We study this in detail in Section I in Appendix.

Joint Image-Text Inpainting In Fig. 1, we show that UniDisc can inpaint in a joint text and
image space—without any fine-tuning. Currently, none of the popular generative models have
this capability, because most multimodal generative models are either autoregressive Team
(2024a) or use mixed modeling Zhou et al. (2024), which prevents them from easily inpainting
jointly over image and text. In Appendix B.4 we explicitly fine-tune an AR model for joint
inpainting, UniDisc zero-shot still shows far better performance. For more qualitative results,
please refer to Fig. 18, and Fig. 19 in the Appendix.

4.2. Training Efficiency and Inference Speed

With the ever growing scale of recent generative models, an important aspect of their perfor-
mance is their compute efficiency. Prior works Hoffmann et al. (2022); Kaplan et al. (2020) have
extensively measured the training scaling laws of AR models, finding a power-law relationship
between compute cost and distribution fitting, measured by negative log likelihood (NLL). In
contrast, there has been little work that has measured the training efficiency of discrete diffusion
models: the closest work is that of Gulrajani and Hashimoto (2024), which finds that the training
efficiency of continuous diffusion models is approximately 64x worse than AR models on text.
Recently, concurrent work Zheng et al. (2024) studied discrete diffusion models, again only on
text, and found a scaling factor of 16x compared to AR models.

Although discrete diffusion is thought to be comparatively more efficient on other modalities
such as images, we are not aware of prior work that has empirically measured this. We perform
an ISOFlop analysis Hoffmann et al. (2022) of UniDisc and our AR baseline, changing only the
attention mask and loss function. As in prior work, we select a set of compute budgets 𝐶𝑖 and,
within each budget, vary the non-embedding parameters (incl. LM head) 𝑁, and total tokens
during training 𝐷, keeping the total compute, measured in FLOPs, fixed using an approximation
of 𝐶 ≈ 6𝑁𝐷.

We compare the training efficiency of UniDisc and our AR baseline in Figure 3 (right) and
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(a) (b)

(c) (d)

Figure 5 | Inference Comparisons for UniDisc and AR baseline: (a) Chameleon Perplexity
(Text+Image) vs. Time - we perform similar to best AR method, (b) Chameleon Perplexity vs.
Entropy - UniDisc has high diversity and low perplexity, while AR has significantly lower
diversity, (c) Image FID vs. NFE, showing image generation saturates quickly with NFE (≈ 32),
(d) GPT2 Generative Text Perplexity vs. NFE showing text generation benefits from more
sampling steps (diminishing).

find that the rough training-inefficiency factor for discrete diffusion to that of AR models for
unified training is about 13.2—i.e. one needs to train UniDisc 13.2x longer to achieve the same
loss. Additional experimental details are available in Appendix C.

While training efficiency is important, inference efficiency is equally—if not more—important
as we deploy these models at wide scale. Thus, we compare the inference efficiency of UniDisc
and our AR baseline in Figure 5 (a), (c) and (d). In (a), we measure the joint generative perplexity
using Chameleon, In (c) we measure the Image FID and in (d) we measure the Text Perplexity.
While it might appear from (a) and (d) that AR does better than UniDisc, in Figure 5 (b), we find
that UniDisc has far higher entropy at a given perplexity.

We note that solely looking at the generative perplexity is not sufficient, as it has been
previously found Zheng et al. (2024) that very low perplexity can be achieved by repeating the
same tokens, which we find often happens with AR w/nucleus sampling and low temperature.
We demonstrate such degenerate cases in Appendix B.3. Therefore, Generative Perplexity +
Entropy should be considered jointly for evaluating the quality of generation results.
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4.3. Multimodal Discriminative Performance

Generative models can act as strong discriminative models as shown in several recent works Jaini
et al. (2024); Li et al. (2023); Prabhudesai et al. (2023). Moreover, Rambhatla and Misra (2023)
show the discriminative ability of a generative model can be a good metric for its generation
performance. In this section, we compare the discriminative capabilities of AR models and
UniDisc on cross-model retrieval tasks (image/text/joint).

We evaluate on Winoground Thrush et al. (2022) and a held-out DataComp1B validation
set Gadre et al. (2024), using 18M text/image pairs from DataComp1B as our training set. To
enable text retrieval during inference for the AR model, we train with flipping the order of
modalities, putting the image first 20% of the time, following Zhou et al. (2024). We find that this
improves the retrieval for the AR model. All other hyperparameters follow those in Section 4.1.
Details of evaluations on CLEVR-VQA and CLEVR-Ref are available in Appendix B.5

A giant leafshaped 
sailplane soars above 
the Colosseum.

A giant leafshaped 
sailplane soars above 
the Colosseum.

Watercolor, apples and 
oranges, unicorn head

Watercolor, apples and 
oranges, unicorn head

Figure 6 | Uniform Concept Generation: We
perform joint generation given only masked
text input (left). We use a language
conditioned segmentation model and find
that UniDisc generates uniformly in concept
space (right).

Clevr-VQA Clevr-Ret Datacomp Winoground

Text Retrieval

AR 0.60 0.81 0.85 0.24

UniDisc 0.63 0.94 0.85 0.31

Image Retrieval

AR N/A 0.06 0.96 0.25

UniDisc N/A 0.25 0.95 0.27

Joint Retrieval

AR N/A 0.06 0.17 0.06

UniDisc N/A 0.5 0.64 0.20

Figure 7 | Image-Text Reasoning measured
by QA and retrieval accuracy across datasets.

In Fig. 7, we report the image retrieval, text retrieval and joint retrieval accuracy for AR and
UniDisc. For image retrieval, the model is given a text caption paired with 16 images, out of
which only one image is correctly paired and the rest are random. The goal is to accurately
classify the correct image. To evaluate the model’s retrieval accuracy we check if the correct
image has the highest 𝑝(𝑥 𝑖𝑚𝑔 |𝑥𝑡𝑥𝑡) among all other images. We do the same for text retrieval,
where we check 𝑝(𝑥𝑡𝑥𝑡 |𝑥 𝑖𝑚𝑔). For joint retrieval, only a single pair has the correct mapping, and
every other pair has a random image and text. We check if the correct pair has the highest joint
probability 𝑝(𝑥𝑖𝑚𝑔, 𝑥𝑡𝑥𝑡)

We find that UniDisc significantly outperforms the AR model on all retrieval tasks. To further
investigate this, we measure the joint retrieval accuracy across denoising steps & CFG values
in Fig. 13 in Appendix. We find CFG and the number of denoising steps to play a large role in
UniDisc’s retrieval accuracy. While the number of denoising steps in an AR model is fixed to
the sequence length, the denoising steps for UniDisc can be much higher.
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4.4. Scaling UniDisc

Impressionist painting of a woman 
walking down a street in Paris

liberty lady statue, crowded 
street scene, mosaic style

the 4 willows are swaying really 
hard over the pond at the beach

a majestic, weeping willow tree 
in a field, with a lake in the 

background.

Figure 8 | Zero-shot Image Editing: UniDisc
can take corrupted and mismatched
image/text pairs (left) and produce an
aligned, high-quality pair (right), using the
model’s own likelihood as a scoring function.

We show that UniDisc scales well across pa-
rameters and dataset size. We train a 1.4B
parameter model with web-scale data. Our
model is trained in two stages, with a low-
resolution pre-training stage and a second
high-resolution fine-tuning stage. Our first-
stage consists of 250M image/caption pairs
at 256×256 resolution. We curate our dataset
from several sources, with 200M open-web im-
ages from Gadre et al. (2024), which were re-
captioned by a VLM to create higher-quality
descriptions by Li et al. (2024b). We also add
a set of smaller datasets consisting of Pixel-
Prose Singla et al. (2024), JourneyDB Sun et al.
(2023), and Cambrian-10M Tong et al. (2024).
In addition, we construct a high-quality, cus-
tom dataset of 18M synthetic images, following
findings by Sehwag et al. (2024); Zhuo et al.
(2024) on the importance of image/caption
alignment for image generation. We construct
our dataset by prompting an LLM to augment
a set of 250K human prompts and use Esser
et al. (2024) for generations. In both stages,
we account for dataset imbalance and sample
more from higher-quality sources. Finally, we
fine-tune our model in a second stage, interpo-
lating the RoPE 2D embeddings to train at 512×512 on 30M image/caption pairs.

Further due to lack of space, we ablate several architecture and objective design choices on a
smaller model in Appendix F and we show the training curve of our 1.4B model is available in
Fig. 15. We also compare UniDisc to recent multimodal models on standard image generation
benchmarks in Appendix H. Qualitative results from the model are available in Appendix G,
demonstrating zero-shot text-conditioned image inpainting (Fig. 18), standard text-to-image
(Fig. 16), and image-to-text (Fig. 17) generation. Moreover, we demonstrate a form of image
editing in Fig. 8 and Appendix G.1, showing that UniDisc can, without any specialized fine-
tuning, automatically improve a text & image pair by noising and denoising, using the model’s
likelihood as a judge. Additionally, we analyze the joint generation of UniDisc in Fig. 6 and
Appendix G.2 , finding that the model generates images roughly uniformly in concepts instead of
in area.

5. Conclusion

In this paper, we introduced UniDisc, the first large-scale unified multimodal discrete diffusion
model capable of generating, inpainting and editing both images and text. By leveraging discrete
diffusion processes, we showed that UniDisc surpasses autoregressive models in both inference
efficiency and quality. Our model unifies various design choices in discrete diffusion space,
across modalities, through extensive ablations and analysis. We hope that our work inspires
future research in this direction.
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A. UniDisc

A.1. UniDisc Training

We describe the detailed algorithm for unified discrete diffusion training on image and text
below in Algorithm 1.

Algorithm 1 UniDisc Training

1: Require: Training data 𝑥
2: Require: Noising Schedule 𝛼𝑡 i.e., Linear or Cosine
3: Require: Unconditional probability 𝑝𝑢𝑛𝑐𝑜𝑛𝑑
4: Initialize: Model parameters 𝜃
5: repeat
6: [𝑥 𝑖𝑚𝑔0 , 𝑥𝑡𝑥𝑡0 ] = 𝑥0 ∼ 𝑝(𝑥, 𝑐) ⊲ Sample image and text data
7: 𝑡 ∼ U(0, 1) ⊲ Sample random timestep
8:
9: 𝑥𝑣𝑡 ∼ 𝑞(𝑥𝑣𝑡 | 𝑥𝑣0) = 𝛼𝑡𝑥0 + (1 − 𝛼𝑡)𝑒𝑚 for 𝑣 ∈ {img, txt} ⊲ mask all tokens

10:
11: With probability 𝑝uncond ⊲ For Classifier-Free Guidance:
12: If rand() < 0.5: ⊲ Randomly set one of the modalities to mask tokens
13: 𝑥

𝑖𝑚𝑔
𝑡 ← 𝑚

14: Else:
15: 𝑥𝑡𝑥𝑡𝑡 ← 𝑚

16: 𝑥
𝑝𝑟𝑒𝑑

0 = 𝑝𝜃( [𝑥 𝑖𝑚𝑔𝑡 , 𝑥𝑡𝑥𝑡𝑡 ]) ⊲ Estimate model prediction from masked sequence
17: Compute loss as: Ldiff =

𝛼′𝑡
1−𝛼𝑡 log⟨𝑥 𝑝𝑟𝑒𝑑0 , 𝑥0⟩ ⊲ Loss function over the logits of inputs

18: Perform gradient step on L to update 𝜃
19: until converged

A.2. Sampling Algorithms

Here we describe the implementations of UniDisc’s sampling algorithm and MaskGIT Chang
et al. (2022).

Algorithm 2 MaskGIT Sampling

1: Initialize: 𝑥𝑇 ← [𝑚,𝑚, . . . ,𝑚] ⊲ All tokens are masked
2: Require: Sampling steps 𝑇
3: Require: Num Tokens to Unmask: 𝑓 (𝑡). We set 𝑓 (𝑡) as 1−𝛼𝑡∑𝑇

𝑡=1 1−𝛼𝑡
4: for 𝑡 = 𝑇 down to 1 do
5: 𝑝𝑥0 ← 𝑝𝜃(𝑥0 | 𝑥𝑡) ⊲ Model prediction
6: 𝑝

(𝑝)
𝑥0 ← Top𝑝(𝑝𝑥0) ⊲ Top-𝑝 (Nucleus) sampling on logits

7: 𝑝
(𝑘)
𝑥0 ←

𝑝
(𝑘)
𝑥0

𝜏(𝑡) ⊲ Apply temperature annealing

8: Sample 𝑥new ∼ Categorical(𝑝(𝑘)𝑥0 ) ⊲ Sample new tokens
9: 𝑀 ← ⌊ 𝑓 (𝑡) × 𝑁⌋ ⊲ Determine number of tokens to unmask

10: Select 𝑀 most confident tokens based on 𝑝
(𝑘)
𝑥0

11: Update 𝑥𝑡−1 [𝑖] ← 𝑥new [𝑖] ∀𝑖 ∈ selected positions
12: Keep previously unmasked tokens unchanged
13: end for
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B. Additional Experiment Details

B.1. Conditional and Unconditional Experiment Details

For unconditional and conditional results in Fig. 10 and 11 we use a dataset of 11B tokens
comprising 30M images from DataComp1B Gadre et al. (2024) and CC12M Changpinyo et al.
(2021) as our training set, with a fraction of 20% text tokens and 80% image tokens after excluding
pad tokens. For faster convergence, we train only on DataComp1B for results in Fig. 5 and
Fig. 13. We tokenize the image and text tokens using separate tokenizers. We use lookup-free
quantization (LFQ) from Luo et al. (2024); Yu et al. (2023) for as our image tokenizer, and use the
tokenizer from Touvron et al. (2023) as our text tokenizer. We use an image resolution of 256×256,
and a downsampling ratio of 16, resulting in a sequence length of 384 with 256 with image
tokens and 128 text tokens. Note that we use the same tokenizers for all the baselines, ensuring
fair comparisons. We train UniDisc for 300 L40S GPU hours and train the autoregressive model
for a proportionate amount of time such that it achieves the same validation loss. Our model
comprises 115M/340M non-embedding parameters and we use a batch size of 512, a learning
rate of 3e−4, and weight decay of 0.05, following Sun et al. (2024).

B.2. Conditional and Unconditional Evaluations

We extend Fig. 4, adding results on Flickr-30K and MS-COCO below in Fig. 9. We show
unconditional results in Fig. 10 and conditional results (taking the optimal CFG weight for both
UniDisc and the AR model) in Fig. 11.

B.3. Generative Perplexity — Qualitative

Text Chameleon Perplexity GPT2 Perplexity
"ICLR is globally renowned for
presenting..." (Continued)

32.836 35.780

"This is simple. This is simple."
(Repeated)

8.423 3.930

"Words Words Words Words" (Re-
peated)

2.226 3.583

"AAAAAAAAAAAA" (Repeated) 2.732 1.904
"(Spaces Repeated)" 80.240 1.095

Table 1. We demonstrate how generative perplexity is an imperfect metric requiring calibration
with entropy.
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Figure 9. Conditional generation results for both FID and CLIP metrics, across a range of CFG
values. We find that AR is more sensitive to the CFG weighting, with a narrower optimal range.

B.4. Quantitative Inpainting Comparison w/autoregressive models

To demonstrate the tradeoff between the pre-training objectives of UniDisc and AR models, we
evaluate both models on inpainting. We fine-tune the 340M parameter AR model on a standard
set of multimodal datasets (CC12M, Recap-DataComp-1B, LAION 400M) and evaluate UniDisc
in a zero shot manner—without any fine-tuning. Specifically, for the AR model, we use a linear
masking schedule for the prefix sequence consisting of a randomly masked text and image pair
and then predict and supervise the clean sequence, doubling the overall sequence length. In
Fig. 12, we evaluate at multiple noise levels, showing the degradation in performance as the
original sequence is increasingly masked.
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CC12M DataComp Flickr MS-COCO

Image + Text Perplexity

Chameleon 541.2 156.8 1254.9 1128.3

UniDisc 494.5 154.8 1115.0 982.2

Image - FID

Chameleon 30.5 20.49 75.70 70.67

UniDisc 35.78 22.97 88.88 77.43

Text - CLIP

Chameleon 23.70 26.08 23.70 23.64

UniDisc 25.01 25.98 24.92 25.01

Figure 10. Unconditional multimodal
generation results for UniDisc and AR

baseline at 115M parameters - both models
perform similarly.

CC12M DataComp Flickr COCO

Text to Image - FID

Chameleon 115M w/o CFG 26.32 20.49 46.13 56.46

Chameleon 340M w/o CFG 20.75 18.53 36.24 42.41

Chameleon 115M w/ CFG (0.5) 22.10 16.68 46.06 47.58

Chameleon 340M w/ CFG (0.5) 20.22 13.55 32.74 30.62

UniDisc 115M w/o CFG 27.22 21.26 43.46 54.21

UniDisc 340M w/o CFG 19.28 14.59 34.37 37.73

UniDisc 115M w/ CFG (1.5) 13.21 12.00 33.79 31.94

UniDisc 340M w/ CFG (1.5) 13.11 11.55 26.83 23.77

Image to Text - CLIP

Chameleon 115M w/o CFG 22.08 26.01 22.50 23.02

Chameleon 340M w/o CFG 22.53 26.68 23.51 24.46

Chameleon 115M w/ CFG (0.5) 22.93 27.30 23.38 24.03

Chameleon 340M w/ CFG (0.5) 23.65 27.70 24.95 25.99

UniDisc 115M w/o CFG 21.75 25.98 22.44 22.88

UniDisc 340M w/o CFG 22.18 26.86 23.18 24.44

UniDisc 115M w/ CFG (1.5) 24.54 29.65 25.42 26.24

UniDisc 340M w/ CFG (1.5) 24.77 30.01 26.63 27.82

Figure 11. Conditional generation results for
UniDisc and AR baseline. Our model

significantly outperforms the AR model when
classifier free guidance is used.
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Figure 12. We compare UniDisc with an AR model fine-tuned for joint inpainting and evaluate
on a subset of DataComp1B.
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B.5. Discriminative Evaluations

For evaluations on CLEVR-VQA and CLEVR-Ref Liu et al. (2019) we use their respective train-
val splits. Note that for CLEVR-VQA and CLEVR-Ref, we do not follow the training scaling
factor found in Fig. 3, we instead train both the models until convergence, i.e multiple epochs.
The small size of these datasets makes it possible to train until convergence. For CLEVR images,
we find that none of the existing tokenizers work well, so we fine-tune our own tokenizer on
CLEVR images. We use images of 128 × 128 resolution, with a total sequence length of 320 (256
image tokens and 64 text tokens). For text, we use a standard BERT tokenizer Devlin et al. (2019).
In Figure Fig. 13, we ablate the role CFG and the number of denoising steps play in UniDisc’s
retrieval accuracy. While the number of denoising steps in an AR model is fixed to the sequence
length, the denoising steps for UniDisc can be much higher.

Figure 13. Joint Retrieval Accuracy on DataComp1B. We outperform AR given the task of
retrieving one correct image-text pair out of 16 possible pairs, implying better learnt

representations.
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C. Scaling Experiment Details

As in prior experiments, all implementation details are shared between UniDiscand AR training
configurations except: (1) causal vs. full attention, (2) masking of the input sequence for UniDisc,
and (3) weighting the CE loss as in Eq. (3).

We use similar hyperparameters as in our small-scale experiments in Section 4.1, but repeat
them here for clarity. For images, we use lookup-free quantization (LFQ) Luo et al. (2024); Yu
et al. (2023) with a image resolution of 256 × 256, and a downsampling ratio of 16, resulting in
a sequence length of 256 image tokens. We use a BPE tokenizer Touvron et al. (2023) for text
with 128 text tokens, resulting in a total sequence length of 384. We report only non-embedding
parameters and data tokenization is identical across all models.

We use a batch size of 512 and use AdamW Loshchilov and Hutter (2019) with 𝛽1 = 0.9,
𝛽2 = 0.95, and weight decay 𝜆 = 0.05. We use a max learning rate of 3e−4 with a linear warmup
followed by a cosine decay schedule, ending with zero at the final step for a given training run.

We list all model variants in Table 2.

Parameters (M) n_layers n_heads d_model

34 11 6 384
67 11 9 576

116 12 12 768
172 20 12 768
228 20 14 896
343 24 16 1024
484 22 10 1280
543 17 12 1536
622 29 10 1280
713 23 12 1536
826 27 12 1536

1074 26 14 1792
1290 24 16 2048

Table 2. Model variants. The FFN hidden size is always 4x the overall d_model
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D. Training Details

D.1. Additional Training Implementation Details

We use flash attention for all models except as noted below, using the popular Flash-Attention 2
library Dao (2023). For all AR models at inference, we use K/V caching and take advantage of
specially optimized functions for this in FlashAttention 2.

E. Fine-tuning An Autoregressive model for Discrete Diffusion

As we already have a plethora of large-scale AR models Team (2024b); Touvron et al. (2023), it
would be useful to have the ability to fine-tune them for a discrete diffusion objective. While the
naive method for fine-tuning would be to change the objective function to discrete diffusion
while using AR’s pre-trained weights. We find that a better idea is to left-shift the output targets
of the diffusion objective such that instead of having the masked token predict its respective
visible token, we have the token before the masked token predict it. In this way, we more closely
match the original AR next-token prediction objective. In Fig. 14 we show that this strategy
works well and we can effectively fine-tune a pre-trained autoregressive language model using
discrete diffusion loss. We demonstrate this result on a 270M parameter language model Mehta
et al. (2024), OpenELM, which is trained with an AR objective. We compare against training
from scratch and training AR without the shift. We find the shifting strategy converges faster.

E.1. Large Scaling Training Curve

We show the training curve for the large scale experiments described in Section 4.4 in Fig. 15.

Figure 14. Fine-tuning a pre-trained 270M
parameter AR model on LM1B.

Figure 15. Training Loss Curve vs. Tokens on
our 1.4B model.
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F. Ablations

We validate our design choices by running small-scale experiments on a subset of our primary
dataset, taking 18M image/caption pairs on DataComp1B. We train on lower-resolution images
at 128 × 128 and obtain a 1:1 ratio of text to image tokens, with 64 text and 64 image tokens
for a total sequence length of 128, with all other hyperparameters the same as in our primary
experiments.

We examine the influence of several design choices for our model in Table 3 and reach
several conclusions. First, architecture changes to improve training stability—namely adding
QK Normalization and using RMSNorm instead of LayerNorm—do not substantially affect
convergence in this setting.

Another natural design choice is to parameterize the model such that we provide the
modality of a given token to the model. With this relaxation we can drastically reduce the
output space and, in theory, simplify the objective for our model. However, we find that this
reparametrization only marginally reduces overall perplexity, even at this smaller-scale. We
hypothesize that the modality-specific embeddings added to each token allows the model to
learn the correct output space with minimal added parameters.

DataComp1B Validation PPL

UniDisc 93.8

w/o QK Norm 92.7

w/ Zero-linear init 93.8

w/o RMSNorm 93.8

w/o -inf for invalid tokens 94.7

w/o Softmin SNR 109.6

None 111.2

Table 3. Ablation w/115M parameter model
of QK Norm, zero initialization of linear

layers, RMSNorm, setting invalid tokens to
−∞ during training and generation, and

Softmin SNR.

DataComp1B Validation FID

UniDisc 11.4

w/cosine noising schedule 11.5

w/o CE loss weighting 11.35

w/discrete time (T=1000) 13.8

Table 4. Ablation w/115M parameter model
on different objective level decisions such as
noising schedule, loss weighting and whether

to use discrete time.
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G. Large Scale Qualitative Results

We show additional results on tasks such as joint inpainting, image captioning and image
generation. We note that none of these tasks were explicitly trained or optimized for by our
model. This is an intrinsic property due to the nature of UniDisc’s unified diffusion based
objective. In Fig. 16 we show standard text-to-image generation and in Fig. 17 we show standard
image-to-text generation. In Fig. 18 we show zero-shot text-conditioned inpainting, and in
Fig. 19 we show zero-shot multimodal inpainting.

a majestic elephant observing a 
sly fox attempting to steal a ball 

from a playful raccoon

Watercolor, apples and oranges, 
unicorn head

Ancient Greek-inspired armor 
made entirely out of Lego pieces, 
with a blurred ancient cityscape 

in the distance

an overflowing crate of assorted 
summer berries

a reindeer is sitting on a snowy 
mountain and has on warm ski 

goggles

A dragonfly zooms out of a 
window, a koala climbs up a palm 
tree, and a toucan sits on a branch.

a sleek, modern train gliding 
across a snowy mountain pass

a medley of autumnal leaves and 
fallen fruits

A dragon with iridescent scales
basking in the warm sunlight on 

a beach.

Cel shaded, Planet of the Apes
character, minimalist icon

A high-tech motorbike crafted 
from neon-lit circuit boards and 

scarlet glass, emitting sparks that 
resemble a swarm of fireflies.

A cyberpunk female hacker, 
dressed in a neon pink hoodie 
and ripped jeans, poses with a 

sleek laptop and a futuristic 
energy blaster, set against a gritty 

cityscape at night.

Figure 16. UniDisc’s ability to generate an image, given unseen text as input.
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A whimsical penguin in a sports 
outfit, playing with balls and 
floating above a city skyline, 
inspired by the steampunk. 

Inspired by M.C. Escher.

A bright red ceramic cup filled with 
a vibrant lemonade next to an old 

fashioned wooden baby wagon in a 
sunny backyard setting.

a grove of trees at dusk with 
scattered branches.

On a quiet summer afternoon, a
pair of classic wooden Adir-ack
chairs are placed on the porch.

Figure 17. UniDisc’s ability to generate text (captioning), given unseen image as input.

A dragon with iridescent scales
basking in the warm sunlight on

a beach.

Cel shaded, Planet of the Apes
character, minimalist icon

A high-tech motorbike crafted
from neon-lit circuit boards and

scarlet glass, emitting sparks that
resemble a swarm of fireflies.

A cyberpunk female hacker,
dressed in a neon pink hoodie
and ripped jeans, poses with a
sleek laptop and a futuristic
energy blaster, set against a

gritty cityscape at night.

Figure 1: Text-to-image generations. Prompts are provided to the model.

a detailed pencil drawing of an
anatomy-inspired flower design

a Baroque-style etching of a
parrot

Vintage photograph, ginger cat,
green eyes, curious expression

young king, 14, newly crowned,
ultra-realistic, colorful, godlike

presence, close-up

Figure 2: Image inpainting generations. Prompts are provided to the model.

1

Figure 18. Zero-shot text-conditioned inpainting. UniDisc inpaints a masked region given a
user-provided text prompt.
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A close-up of a corgi's face
A close-up of a corgi's face with 

a big smile on red lips, set 
against a background covered 
in silly doodles and scribbles.

In a dense forest, a wise old a 
gnarled tree branch.

In a dense forest, a wise old 
owl and mongoose sit side by 

side, both supporting a gnarled 
tree branch.

tropical fish tropical fish swimming in 
shallow coral reef

A group of hot above the 
Colosseum.

A group of hot air balloons float 
above the Colosseum.

Figure 19. Zero-shot multimodal inpainting. UniDisc jointly inpaints in both image and text
spaces.
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G.1. Zero-shot image editing of UniDisc

A clear benefit of diffusion models is the ability to perform zero-shot editing without specific
paired data—which is often difficult to obtain. We demonstrate one such method in Figure 20,
showing that UniDisc can automatically improve a user provided image and caption.

We augment real images by overlaying random objects from the COCO dataset. Similarly,
we augment captions by asking an LLM to generate purposely incorrect variations. We then
randomly mask the image and text inputs and unmask as described above, automatically
removing these undesired image artifacts and generating the correct caption. We adopt a best-
of-n sampling strategy with n distinct noise masks. We unroll each generation using the model’s
own likelihood to select the best generation.

this is a palace with some 
water and plants around it

a luxurious mansion surrounded 
by overgrown fountains and a  

vintage stone fountain

peeking out from behind a stack of 
books and computer manuals in a 
loud library is a curious little boy

cat with glasses perched on a 
stack of books, reminiscent of van 

gogh's sunflowers. reading

a watercolor cityscape of the 
dutch golden age with a castle

Cairns Locks River, digital 
painting with a watercolor effect

A massive sea creature emerges 
from the wreckage, surrounded by 

seaweed and green fish.

underwater fish swimming with 
dolphin and silhouetted against 

sunlight on vibrant coral

A parrot is sitting on a windowsill 
as a snake slithers past and a 

sunflower grows outside.

An old man sitting in a worn 
armchair in a cluttered living 

room watching TV

Caption Fixed

Caption Fixed

Figure 20. Zero-shot multimodal editing. We provide a clean image and text pair and UniDisc
automatically enhances both the image and text. In the final row, we fix the text and allow only

the image to change.

G.2. Analyzing the joint image-text generation of UniDisc

In Figure 21, we visualize how the model iteratively infills both image and text. This raises the
question - does UniDisc follow a certain strategy during generation (for example, generating
entire background first then moving to subject or generating text first before image), or does it
generate everything at once jointly. To analyze this, we take the final model generated image,
semantically segment it (using Grounded SAM 2 in our case) and then see which concepts get
generated at what timesteps. This is visualized in Figure 22. We find that UniDisc generates
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all concepts at once proportional to the overall fraction of the image the concept occupies. We
also investigated if the UniDisc has any strong positional bias, such as first generating tokens
in the middle and radially filling out. However we find no such positional strategy and that
UniDisc is positionally invariant. Intuitively, this means that at any denoising step, all positions
are equally likely to be decoded.

A group of hot 
air balloons 
racing above the 
Colosseum.

A hot air bal 
balonon 
hovering above 
the Colosseum.

A giant 
leafshaped 
sailplane soars 
above the 
Colosseum.

A giant 
leafshaped 
sailplane soars 
above the 
Colosseum.

A giant leaf 
shaped 
sailplane soars 
above the 
Colosseum.

A k-shaped 
kite soars 
above the 
Colosseum.

A kite with a 
kite soaring 
above the 
Colosseum.

A kite withaped 
kite 
soaring above 
the Colosseum.

A viteshaped 
kite soars above 
the Colosseum.

A hot air 
balloonon  
hovering above 
the Colosseum.

A________ 
above the 
Colosseum.

A________ 
above the 
Colosseum.

A________ 
above the 
Colosseum.

A_______ars 
above the 
Colosseum.

 A___aped__ 
soars above 
the 
Colosseum.

A giant__aped 
sailplane soars 
above the 
Colosseum.

A giant 
leafshaped 
sailplane soars 
above the 
Colosseum.

A giant 
leafshaped 
sailplane soars 
above the 
Colosseum.

A________ 
above the 
Colosseum.

A group of hot 
air balloons 
racing above the 
Colosseum.
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A you a a 
rooftftftftftftft,,,,,,,,,,,,,,,,,, 
your favorite Latin 
rhythms, and large dance 
floor.

 You're the the 
rooftftftftftftft at at 
sunset, you can the the 
the,,,,,,, your favorite 
Latin rhythms, and large 
dance floor.

You youre the ro ro 
roftftftftftftop at at sunset, 
you can a romantic dinner 
party,,,,, your favorite 
Latin rhythms, and large 
dance floor.

You youre the on the 
balcony in Buenos Aires, 
youset sun sunset, you can 
a romantic dinner party,,,,, 
your favorite Latin 
rhythms, and large dance 
floor.

 You youre the on a balcony 
in Buenos Aires, youset sun 
sunset, you can a romantic 
dinner party,,,,, your 
favorite Latin rhythms, and 
large dance floor.

 A a special occasion at a 
balcony in Buenos Aires 
during a sun sunset, where 
you can a a dinner, DJ, giant 
screens displaying your 
favorite Latin rhythms, and 
large dance floor.

Picture a special occasion at a 
balcony in Buenos Aires 
during the sun sunset, where 
you enjoy a rom dinner, 
DJing, screens displaying 
your favorite Latin rhythms, 
and large dance floor.

Picture a special occasion 
at the balcony in Buenos 
Aires with stunning sunset 
views where you enjoy a 
rom dinner, DJ console, 
screens track your favorite 
Latin rhythms, and large 
dance floor.

On a special occasion at the 
balcony in Buenos Aires lies 
stunning sunset views 
where you enjoy tap dinner, 
DJ console, screens track 
your favorite Latin rhythms, 
and large dance floor.

_____________________
___________ your 
favorite Latin rhythms, 
and large dance floor

____________________ 
you___________ your 
favorite Latin 
rhythms, and large 
dance floor.

____________________ 
you____ dinner______ 
your favorite Latin 
rhythms, and large 
dance floor.

_______ bal__ in_ 
Aires_______ you____ 
dinner______ your favorite 
Latin rhythms, and large 
dance floor.

_______ bal__ in Buenos 
Aires_______ you____ 
dinner______ your favorite 
Latin rhythms, and large 
dance floor.

___ occasion at_ balcon_ in 
Buenos Aires______ where 
you___ dinner, DJ__ 
screens_ your favorite Latin 
rhythms, and large dance 
floor.

___ occasion at_ balcon_ in 
Buenos Aires______ where 
you___ dinner, DJ__ 
screens_ your favorite Latin 
rhythms, and large dance 
floor.

x0

Luxury has invaded 
Alcatraz Island in the 
form of a high-end 
nightspot with fine 
dining options, live music 
performances that 
celebrate your favorite 
Latin rhythms, and large 
dance floor.

_ a special occasion at the 
balcon_ in Buenos Aires_ 
stunning_set views where 
you enjoy__ dinner, DJ 
console, screens track your 
favorite Latin rhythms, and 
large dance floor.

 On a special occasion at the 
balcony in Buenos Aires lies 
stunning sunset views 
where you enjoy tap dinner, 
DJ console, screens track 
your favorite Latin rhythms, 
and large dance floor.

Luxury has invaded 
Alcatraz Island in the 
form of a high-end 
nightspot with fine 
dining options, live music 
performances that 
celebrate your favorite 
Latin rhythms, and large 
dance floor.

Figure 21. We show how UniDisc jointly infills both image and text. argmax 𝑝𝜃(𝑥0 | 𝑥𝑡)
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tropical fish, shallow 
coral garden, sunlit

tropical fish, shallow 
coral garden, sunlit

A dragonfly zooms out 
of a window, a koala 
climbs up a palm tree, 
and a toucan sits on a 
branch.

A dragonfly zooms out 
of a window, a koala 
climbs up a palm tree, 
and a toucan sits on a 
branch.

Figure 22. We demonstrate that UniDisc uniformly generates all concepts at once.

G.3. Zero-shot length extrapolation of UniDisc

In this section, we demonstrate the ability of UniDisc to perform zero-shot flexible resolution
generation thanks to the use of RoPE embeddings on both text and image tokens. UniDisc
model was fine-tuned on 512x512 images—resulting in each image using 1024 tokens—but is
able to infill at 1024x1024—resulting in 4096 tokens per image—without further training. We
demonstrate this in Fig. 23.

A whimsical, dreamlike painting of a forest, with a destroyed AT-AT in the distance, 
surrounded by towering mushrooms and glowing fireflies

an eye-catching graphic art poster featuring a majestic winged lion from mythology, 
surrounded by flames and magic spells

A group of friends hiking together through the misty fog, with a beautiful lake or 
river in the distance

Figure 23. We train UniDisc on 512x512 resolution images but demonstrate zero-shot inpainting
at 1024x1024.
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H. Large Scale Quantitative Comparisons

H.1. Quantitative Generation Comparison with recent mulitmodal models

In Table 5, we evaluate UniDisc on the popular GenEval Ghosh et al. (2023) benchmark which
looks at how well a generated image adheres to the prompt in terms of a set of predefined
attributes (e.g., color, positioning). In Table 6, we compare FID on the popular MS-COCO
30K Chen et al. (2015) dataset on MJHQ-30K Li et al. (2024a), which contains a higher proportion
of highly-aesthetic images.

We also compare to the reported results from UniD3 Hu et al. (2023), which most closely
resembles our work.

Method Sing. Obj. Two Obj. Counting Colors Position Color Attr. Overall

SDv1.5 Rombach et al. (2022) 0.97 0.38 0.35 0.76 0.04 0.06 0.43
CoDI Tang et al. (2024) 0.89 0.16 0.16 0.65 0.02 0.01 0.31
Lumina-mGPT Liu et al. (2024) - - - - - - 0.32

UniDisc 0.92 0.47 0.15 0.67 0.13 0.19 0.42

Table 5. We evaluate UniDisc on the GenEval Ghosh et al. (2023) benchmark.

Method MSCOCO-30K FID ↓ MJHQ-30K FID ↓
SDv1.5 Rombach et al. (2022) 11.12 -
CoDi Tang et al. (2024) 22.26 19.87
UniD3 Hu et al. (2023)2 25.11 -

UniDisc (Ours) 23.86 18.67

Table 6. We evaluate the 1.4B version of UniDisc on FID. We use
evaluate on MS-COCO 30K Chen et al. (2015) and MJHQ-30K Li

et al. (2024a).

Method Params CUB200 FID ↓
UniD3 Hu et al. (2023) 637M 17.38

UniDisc (Ours) 330M 11.03

Table 7. We compare our model to Hu et al. (2023) on CUB200.

2Trained only on MS-COCO. Other works listed in this table trained on a broader set of datasets (possibly
including MS-COCO). In most cases, training on additional datasets likely harms dataset-specific FID.
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I. Understanding the effect of Classifier Free Guidance (CFG)

In Table 11, we observe that CFG is a significant factor in the performance difference between
UniDisc and the AR baseline. We hypothesize that this is because CFG is most useful in
decoding the first few tokens, with diminishing utility in later tokens. To examine this, we
look at intermediate predictions by storing arg max 𝑝𝜃(𝑥0 | 𝑥𝑡) at each sampling step. As an AR
model cannot directly capture this distribution without an intractable rollout, we opt to use the
same UniDisc model but with an autoregressive inference strategy, decoding from left to right.
This allows us to directly compare the performance of different inference strategies and how
they interact with classifier-free guidance.

We visualize this in Figure 24, where we visualize the difference between the conditional
and unconditional image generated at different percentages of decoded tokens. We notice two
things: (a) the difference diminishes as more tokens are decoded and (b) UniDisc consistently
has higher distances between the logits than AR, which flattens out more quickly.

Figure 24. L2 distance between unconditional
and conditional logits on currently masked

tokens as sampling steps increase.

Steps CLIP Score
[1 − 3] 0.301
[12 − 14] 0.293
[22 − 24] 0.283
All (24) 0.312

Figure 25. Comparing CLIP scores by
applying CFG only on specific steps. This

shows CFG has the most impact on the initial
denoising steps (total steps = 24).

Intuitively, this means UniDisc extracts much more discriminating signal from CFG com-
pared to AR. We believe this is because UniDisc has much more flexibility to decode tokens
initially based on confidence, compared to AR which is forced to decode in a left to right manner
and thus, can course correct quickly and more effectively. This can be seen in Table 25, where
we selectively apply CFG only on a few steps and notice that CLIP score when CFG is applied
on steps 1-3 almost matches applying CFG on all, while applying on the last few steps doesn’t
affect things much at all.

Given the differences in CFG between UniDisc and AR models, we conduct a hyperparam-
eter sweep over guidance scales in Figure Fig. 4. We compute FID and CLIP scores over four
datasets, and at both 115/340M parameters. We find that our AR baseline benefits from a weight
of 𝑤 = 0.5 but sees far less improvement than UniDisc with CFG. For UniDisc, we choose an
overall weight of 𝑤 = 1.5, but note that the CLIP score scales cleanly with the guidance scale,
demonstrating the trade-off between visual quality and prompt adherence.

Finally, in Fig. 26, we show the effect of CFG on the generated image. We increase the weight
of the classifier-free guidance from 𝑤 = 0 to 𝑤 = 8 and observe the effect on the generated image.
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Figure 26. We show the effect of classifier-free guidance from left-to-right, starting with 𝑤 = 0,
and increasing linearly to 𝑤 = 8 on the right, where output logits are

𝑙cfg = (1 +𝑤)𝑙cond +𝑤 ∗ 𝑙uncond.
Caption: "crab meditating, surfboard, orange sun setting, rainbow clouds, zen beach"

J. Inference: Generation time vs. batch size

We analyze the quality of the generation versus time in Figure 27. We make a similar observation
as in prior work Gat et al. (2024); Ziv et al. (2024) on discrete diffusion, finding that the ability to
obtain predictions with varying sampling steps allows lower latencies. However, with current
implementations, KV caching in AR models results in higher throughput as the batch size
increases. This tradeoff can be explained by looking at the number of function evaluations
(NFEs) and the cost of each in both cases. In AR generation w/KV caching, we have a fixed
NFE, but each forward pass is substantially less expensive than in the NAR case. In contrast, in
NAR, we can use substantially fewer NFEs, but each is more costly. Modern GPUs only reach
peak throughput at larger batch sizes Chitty-Venkata et al. (2024); as we decrease the batch size,
the difference in computation per function evaluation diminishes, resulting in NAR having
favorable performance.

(a) (b)

Figure 27. Generative Perplexity vs. Time with various models and sampling strategies.
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